Hi,
This is what u want may be
Mathematical Functions
ABAP contains a range of built-in functions that you can use as mathematical expressions, or as part of a mathematical expression:
[COMPUTE] <n> = <func>( <m> ).
The blanks between the parentheses and the argument <m> are obligatory. The result of calling the function <func> with the argument <m> is assigned to <n>.
Functions for all Numeric Data Types
The following built-in functions work with all three numeric data types (F, I, and P) as arguments.
Functions for all numeric data types
Function
Result
ABS
Absolute value of argument.
SIGN
Sign of argument: 1 X > 0
SIGN( X) = 0 if X = 0
-1 X < 0
CEIL
Smallest integer value not smaller than the argument.
FLOOR
Largest integer value not larger than the argument.
TRUNC
Integer part of argument.
FRAC
Fraction part of argument.
The argument of these functions does not have to be a numeric data type. If you choose another type, it is converted to a numeric type. For performance reasons, however, you should use the correct type whenever possible. The functions itself do not have a data type of their own. They do not change the numerical precision of a numerical operation.
DATA N TYPE P DECIMALS 2.
DATA M TYPE P DECIMALS 2 VALUE '-5.55'.
N = ABS( M ). WRITE: 'ABS: ', N.
N = SIGN( M ). WRITE: / 'SIGN: ', N.
N = CEIL( M ). WRITE: / 'CEIL: ', N.
N = FLOOR( M ). WRITE: / 'FLOOR:', N.
N = TRUNC( M ). WRITE: / 'TRUNC:', N.
N = FRAC( M ). WRITE: / 'FRAC: ', N.
The output appears as follows:
ABS: 5.55
SIGN: 1.00-
CEIL: 5.00-
FLOOR: 6.00-
TRUNC: 5.00-
FRAC: 0.55-
DATA: T1(10),
T2(10) VALUE '-100'.
T1 = ABS( T2 ).
WRITE T1.
This produces the following output:
100
Two conversions are performed. First, the contents of field T2 (type C) are converted to type P. Then the system processes the ABS function using the results of the conversion. Then, during the assignment to the type C field T1, the result of the function is converted back to type C.
Floating-Point Functions
The following built-in functions work with floating point numbers (data type F) as an argument.
Functions for floating point data types
Function
Meaning
ACOS, ASIN, ATAN; COS, SIN, TAN
Trigonometric functions.
COSH, SINH, TANH
Hyperbolic functions.
EXP
Exponential function with base e (e=2.7182818285).
LOG
Natural logarithm with base e.
LOG10
Logarithm with base 10.
SQRT
Square root.
For all functions, the normal mathematical constraints apply (for example, square root is only possible for positive numbers). If you fail to observe them, a runtime error occurs.
The argument of these functions does not have to be a floating point field. If you choose another type, it is converted to type F. The functions themselves have the data type F. This can change the numerical precision of a numerical operation.
Regards
Following maths functionas are there in SAP:
abs -Absolute value of the argument arg
sign- Plus/minus sign of the argument arg: -1, if the value of arg is negative; 0 if the value of arg is 0; 1 if the value of arg is positive.
ceil -Smallest integer number that is not smaller than the value of the argument arg.
floor- Largest integer number that is not larger than the value of the argument arg.
trunc- Value of the integer part of the argument arg
frac- Value of the decimal places of the argument arg
acos -Arcuscosinus [-1,1]
asin- Arcussinus [-1,1]
atan- Arcustangens
cos- Cosinus
sin- Sinus
tan- Tangens
cosh- Hyperbelcosinus
sinh -Hyperbelsinus
tanh -Hyperbeltangens
exp -Exponential function for basis e [-709, 710]
log -Natural logarithm > 0
log10 -Logarithm for basis 10 > 0
sqrt -Square root
check this example from abapdocu
* numeric datatypes DATA n TYPE p DECIMALS 2. DATA m TYPE p DECIMALS 2 VALUE '-5.55'. n = abs( m ). WRITE: 'ABS: ', n. n = sign( m ). WRITE: / 'SIGN: ', n. n = ceil( m ). WRITE: / 'CEIL: ', n. n = floor( m ). WRITE: / 'FLOOR:', n. n = trunc( m ). WRITE: / 'TRUNC:', n. n = frac( m ). WRITE: / 'FRAC: ', n. ULINE. * floating points DATA: result TYPE f, pi(10) TYPE c VALUE '3.14159265'. result = cos( pi ). WRITE result.
Add comment